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Abstract: By the transition probability flow graphs methods, we considered the distribution Gk(p), and derived its
probability generating function. Based on Gk(p), we came to the probability distribution of NBk(r, p) and showed
the correlation between them. Following NBk(r, p), we got the distribution of Bk(n, p), and then we discussed
its some properties including the mean and convergence. Finally, we employed the properties to study a reliability
question.
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1 Introduction
The present paper discusses the probability and statis-
tics properties of the binomial distribution of order k,
an important distribution in Bernoulli trials that de-
noted by Bk(n, p). To the best of our knowledge, the
probability generating function of Bk(n, p) has not
yet appeared in literature since it is too complicated
[11]. Therefore, its probability distribution and mean
are difficult to be obtained. By the transition proba-
bility flow graphs methods applied widely in the sam-
pling inspection field, we discuss the geometric and
the negative binomial distributions of order k [1, 4,
10], and obtain their probability distributions. Follow-
ing the distributions, we derive the binomial distribu-
tion of order k [6, 10, 13], obtain its mean and other
properties.

The prototype of transition probability flow
graphs methods is the signal flow graphs theory ap-
plied to systems engineering widely, which was orig-
inated by Mason [9]. Koyama [8] firstly introduced
it into the study of sampling inspection. It gradually
became a perfect theory by Fan’s work [2,3]. Now we
provide a brief description for the methods.

Based on decomposing the Markov chain formed
by the variation of a nonnegative integer-valued ran-
dom variable, ascertaining the states and routes, and
setting probability functions to the routes, we can ar-
rive at a flow graph of the process being similar to
the transition probability graph of the chain. By the
series-parallel operation rules, we can get the proba-
bility generating function of the random variable from

the flow graph.
Let τ be a nonnegative integer-valued random

variable with probability space (Ω,F , P ), set Bn =
{τ = n}, then for any a fixed B ∈ F , the transition
probability function of τ is defined by Gτ (x;B) =∑∞

n=0 P (BBn)x
n, |x| ≤ 1. Particularly, B = Ω

yields the probability generating function of τ as
Gτ (x) =

∑∞
n=0 P (τ = n)xn, |x| ≤ 1.

Consider a Markov chain that takes on countable
number of possible values. The transition process
from state s1 into s2 denoted by r : s1 ⇒ s2 is called
a route, and its transition time named step is a random
variable. By the Markovian property that the steps of
s1 ⇒ s2 and s2 ⇒ s3 are independent. The tran-
sition probability function of the route r is defined by
Gr(x) =

∑∞
n=0 Pr(n)x

n, |x| ≤ 1, where Pr(n) is the
n−step transition probability of r. The route from s1
into s3 by way of s2 denoted by r1 ·r2 is called a series
route if the routes r1 : s1 ⇒ s2 and r2 : s2 ⇒ s3 are
independent. The route denoted by r1 + r2 is called a
parallel route of r1 : s1 ⇒ s2 and r2 : s1 ⇒ s2 if they
are mutually exclusive. The conclusion of Lemma 1
is obvious.

Lemma 1 [2, 12] Let Gr1(x) and Gr2(x) be respec-
tively the transition probability functions of the routes
r1 and r2, then Gr1·r2(x) = Gr1(x) · Gr2(x) and
Gr1+r2(x) = Gr1(x) +Gr2(x).

The route l : s1 ⇒ s2 is called a straight route
if no state is repeated in it. The route o : s1 ⇒ s1
is called a loop route on state s1 if s1 can be repeated
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infinitely, and all the repeated routes are independent
identically distributed. For the straight route and loop
route, we have

Lemma 2 [3, 14] Let Gl(x) be the transition prob-
ability functions of the straight routes l : s1 ⇒
s2, Go1(x) and Go2(x) be respectively the transi-
tion probability functions of one repetition of the loop
routes on state s1, then

Gl·o1(x) = Gl(x)/[1−Go1(x)],

Gl·(o1+o2)(x) = Gl(x)/[1−Go1(x)−Go2(x)].

2 The probability distribution of the
binomial distribution of order k

In the present section, following the transition proba-
bility flow graphs methods, we derive the probability
generating functions of Gk(p) and NBk(r, p), further,
we get the probability distribution of the binomial dis-
tribution of order k. Let X(k) denote the number of
trials until the occurrence of success run with length
k in Bernoulli trials with success probability p. We
denote its probability distribution by Gk(p), and call
it the geometric distribution of order k with parameter
vector p.

Theorem 3 The probability generating function of
X(k) distributed as Gk(p) is given by

GX(k)
(x) =

pkxk − pk+1xk+1

1− x+ qpkxk+1
, (1)

where q = 1− p.

Proof. Let τn be the state that the trial process will
be in at the end of the first n trials, where the num-
ber of trials n is also named transition time. Then
{τn, n = 1, 2, · · · } is a Markov process with state
space S = {0, 1, · · · , k}, where 0 is the beginning
state and k is the ending state. The event {τn =
s, s ∈ S} denotes the occurrence of s consecutive
success at the end of the foregoing n trials. Hence,
{τn = k} = {X(k) = n}. From the beginning to the
ending, we can obtain the transition probability flow
graphs of {τn, n = 1, 2, · · · } as shown in Fig. 1.

Fig. 1: The transition probability flow graphs of Gk(p)

There are k parallel loop routes at the beginning
state B with respectively the transition probability
functions qx, qx(px), qx(px)2, · · · , qx(px)k−1, and
k series straight routes from B to E with the same
transition probability function px. Then we get the
transition probability functions of the loop route and
the straight route from B to E denoted respectively by
O(x) and L(x) as follows

O(x) =
k−1∑
i=0

(qx)(px)i, L(x) = pkxk.

By Fig. 1 and Lemma 2, we get the probability
generating function of X(k) (i.e. the transition time of
the route B → E)

GX(k)
(x) =

pkxk

1−
∑k−1

i=0 (qx)(px)
i
=

pkxk − pk+1xk+1

1− x+ qpkxk+1
.

This completes the proof. ⊓⊔
Next, we consider the probability distribution of

the negative binomial distribution of order k. Let
X(k,r) be a random variable denoting the number of
trials until the rth occurrence of the success run with
length k in Bernoulli trials with success probability
p. We denote the probability distribution of X(k,r) by
NBk(r, p) and call it the negative binomial distribu-
tion of order k with parameter vector (r, p).

Theorem 4 The probability generating function of
X(k,r) distributed as NBk(r, p) is presented as fol-
lows

GX(k,r)
(x) =

(
pkxk − pk+1xk+1

1− x+ qpkxk+1

)r

. (2)

Proof. Let X1
(k) be the number of trials until the oc-

currence of the 1th success run, and Xs
(k) be the num-

ber of trials from the ending of the (s − 1)th suc-
cess run to the occurrence of the sth one respectively,
s = 2, · · · , r. It is obvious that X1

(k), X
2
(k), · · · , X

r
(k)

are independent and identically distributed random
variables each having the probability generating func-
tion as formula (1). Hence we get the generating func-
tion of X(k,r) = X1

(k) +X2
(k) + · · ·+Xr

(k) as follows

GX(k,r)
(x) =

r∏
s=1

GXs
(k)
(x) =

(
GX1

(k)
(x)
)r

=

(
pkxk − pk+1xk+1

1− x+ qpkxk+1

)r

.

Theorem 4 has been proven. ⊓⊔
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Theorem 5 If the random variable X(k,r) is dis-
tributed as NBk(r, p), then

P (X(k,r) = n) =
∑

n1,n2,··· ,nk∋
n1+2n2+···knk=n−kr(

n1 + n2 + · · ·+ nk + r − 1

n1, n2, · · · , nk, r − 1

)(
q

p

)n1+n2+···+nk

pn,

where n = kr, kr + 1, kr + 2, · · · .

Proof. Following formula (2), we get

GX(k,r)
(x) =

(
pkxk

1− qx(1 + px+ · · ·+ pk−1xk−1)

)r

=

(
pkxk

1− q
p(px+ · · ·+ pkxk)

)r

= pkrxkr
(
1− q

p
(px+ · · ·+ pkxk)

)−r

= pkrxkr
∞∑
n=0

(
r + n− 1

r − 1

)(
q

p

)n

(px+· · ·+pkxk)n

= pkrxkr
∞∑
n=0

(
r + n− 1

r − 1

)(
q

p

)n

×

∑
n1,··· ,nk∋

n1+···+nk=n

(
n

n1, · · · , nk

)
(px)n1+2n2+···+knk

=

∞∑
n=0

∑
n1,··· ,nk∋

n1+···+nk=n

(
r + n− 1

r − 1

)(
n

n1, · · · , nk

)
×

(
q

p

)n

(px)n1+2n2+···+knk+kr

=
∑

n1,n2,··· ,nk

(
n1 + n2 + · · ·+ nk + r − 1

n1, n2, · · · , nk, r − 1

)
×

(
q

p

)n1+n2+···+nk

(px)n1+2n2+···+knk+kr,

=

∞∑
n=kr

∑
n1,··· ,nk∋∑k
i=1 ini=n−kr

(
n1 + · · ·+ nk + r − 1

n1, · · · , nk, r − 1

)
×

(
q

p

)n1+n2+···+nk

pnxn.

So, from the above we can easy come to the probabil-
ity distribution of X(k,r). ⊓⊔

Remark 6 NBk(1, p) = Gk(p).

Let N (k)
n be the number of success run of length

k in n Bernoulli trials with success probability p. The
probability distribution of N (k)

n denoted by Bk(n, p)
is called the binomial distribution of order k with pa-
rameter vector (n, p). Note that when k = 1, B1(n, p)
is the usual binomial distribution B(n, p).

Theorem 7 The probability distribution of Bk(n, p)
is given by

P (N (k)
n = r) =

k−1∑
s=0

∑
m1,m2,··· ,mk∋

m1+2m2+···+kmk=n−s−kr(
m1 + · · ·+mk + r

m1,m2, · · · ,mk, r

)(
q

p

)m1+···+mk

pn, (3)

where r = 0, 1, · · · , [nk ], and [x] denotes the greatest
integer not exceeding x ∈ R.

Proof. Suppose X(k,r) is a variable distributed as
NBk(r, p), then {X(k,r+1) = m} is equivalent to
that either the (m − k)th trial is a failure and all
the subsequent k trials are successes, or all the pos-
terior 2k trials are successes in the m trials. Let
“⊕” be a success, “⊖”be a failure, “⊙”be a trial, for
m = n+k, n+k−1, · · · , n+1, we have the figure of
the events {X(k,r+1) = n+k−s}, s = 0, 1, · · · , k−1
as follows, where k = 4 for simplicity.

n trials︷ ︸︸ ︷
⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊙⊖⊕⊕⊕ ⊕ s = 0
⊙ · · · ⊙ ⊙ ⊙⊙⊕⊕⊕⊕⊕⊕⊕⊕ s = 0
⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊖⊕⊕⊕ ⊕ s = 1
⊙ · · · ⊙ ⊙ ⊙⊕⊕⊕⊕⊕⊕⊕ ⊕ s = 1
⊙ · · · ⊙ ⊙ ⊙⊙⊙⊖⊕⊕⊕⊕ s = 2
⊙ · · · ⊙ ⊙ ⊕⊕⊕⊕⊕⊕⊕⊕ s = 2
⊙ · · · ⊙ ⊙ ⊙⊙⊖⊕⊕⊕ ⊕ s = 3
⊙ · · · ⊙ ⊕ ⊕⊕⊕⊕⊕⊕ ⊕ s = 3

Fig. 2: The events of {ξ(k,r+1) = n+ k − s}

Let {X(k,r+1) = n + k − s|(k − s) ⊕} denote
the event that (r + 1) success runs of length k occur
in (n+ k− s) trials and the last (k− s) successes are
deleted, where s = 0, 1, · · · , k− 1. Following Fig. 2,
we shall find that

∪k−1
s=0{X(k,r+1) = n + k − s|(k −

s) ⊕} means all the possible ways the r success runs
occur in n trials. Hence we have

{N (k)
n = r} =

k−1∪
s=0

{X(k,r+1) = n+k−s|(k−s)⊕}.
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Therefore

P (N (k)
n = r)

=
k−1∑
s=0

P
(
{X(k,r+1) = n+ k − s|(k − s) ⊕}

)

=

k−1∑
s=0

p−(k−s) · P
(
X(k,r+1) = n+ k − s

)

=

k−1∑
s=0

∑
m1,m2,··· ,mk∋

m1+2m2+···+kmk=n−s−kr(
m1 +m2 + · · ·+mk + r

m1,m2, · · · ,mk, r

)(
q

p

)m1+m2+···+mk

pn.

Theorem 7 has been proven. ⊓⊔

3 Some properties of the binomial
distribution of order k

It is well known that when k = 1, the usual binomial
distribution B(n, p) converges to the usual Poisson
distribution P (λ) as n → ∞, p → 0 and np → λ. In
addition, if Z1 and Z2 are independently distributed as
P (λ1) and P (λ2), then the conditional random vari-
able Z1|Z1 + Z2 = n is distributed as B(n, p) where
p = λ1/(λ1 + λ2). However, for k > 1, the above
conclusions are not true.

Proposition 8 Bk(n, p) does not converge to Pk(λ)
as n → ∞, p → 0 and np → λ if k > 1.

Proof. To show this, we represent the probability gen-
erating function of Pk(λ) derived by Shao in [15] as
follows

GZ(k)
(x) = eλ(x+···+xk−k).

Let G
N

(k)
n

(x) be the generating function of N (k)
n

distributed as Bk(n, p). It is easy to find that if
P (N

(k)
n = 0) 9 e−λk as n → ∞, np → λ, then

G
N

(k)
n

(x) 9 GZ(k)
(x), where P (N

(k)
n = 0) and e−kλ

are respectively the constant terms of G
N

(k)
n

(x) and
GZ(k)

(x).
We only consider k = 2. By formula (3), the

constant term of the generating function G
N

(2)
n

(x) is

P (N (2)
n = 0) =

1∑
s=0

∑
m1,m2∋

m1+2m2=n−s

(
m1 +m2

m1,m2

)(
q

p

)m1+m2

pn

=
∑

m1,m2∋
m1+2m2=n

(
m1 +m2

m1,m2

)(
q

p

)m1+m2

pn

+
∑

m1,m2∋
m1+2m2=n−1

(
m1 +m2

m1,m2

)(
q

p

)m1+m2

pn

= qn +

[n+1
2

]∑
l=1

(
n− l + 1

l

)
qn−lpl,

let n → ∞, p → 0 and np → λ, then

P (N (2)
n = 0) → e−λ + λe−λ +

λ2

2!
e−λ + · · · = 1.

On the other hand, for the random variable Z(2) that
distributed as P2(λ), the constant term of GZ(2)

(x) =

eλ(x+x2−2) is e−2λ. By P (N
(2)
n = 0) 9 e−2λ, we say

that G
N

(2)
n

(x) 9 eλ(x+x2−2). Thus for any positive
integer k > 1, we shall conclude that

G
N

(k)
n

(x) 9 eλ(x+···+xk−k).

It means that the binomial distribution of order k(> 1)
does not converge to the Poisson distribution of order
k as n → ∞, p → 0 and np → λ. ⊓⊔

Proposition 9 If Zi are independently distributed as
Pk(λi), i = 1, 2, then the conditional random vari-
able Z1|Z1 + Z2 = n is not distributed as Bk(n, p)
with parameter p = λ1/(λ1 + λ2) when k > 1.

Proof. The probability distribution of Pk(λ) can be
found in [5], [10] and [15], we represent it as follows

P (Z = m) =
∑

m1,m2,··· ,mk∋
m1+2m2+···+kmk=m

λm1+···+mk

m1! · · ·mk!
e−λk,

where m = 0, 1, 2, · · · . Furthermore, we can show
that if Z1 and Z2 are independently distributed as
Pk(λ1) and Pk(λ2) respectively, then Z1 + Z2 is dis-
tributed as Pk(λ1 + λ2).

Assume that k = 2, λ1 = λ2 = λ, then Z1 + Z2

is distributed as P2(2λ). Hence we arrive at
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P (Z1 = 1|Z1 + Z2 = 2)

=
P (Z1 = 1, Z1 + Z2 = 2)

P (Z1 + Z2 = 2)

=
P (Z1 = 1)P (Z2 = 1)

P (Z1 + Z2 = 2)

=

 ∑
m1,m2∋

m1+2m2=1

λm1+m2e−2λ

m1!m2!


2

÷
∑

m1,m2∋
m1+2m2=2

(2λ)m1+m2

m1!m2!
e−4λ =

λ

2λ+ 2
. (4)

However, if N
(2)
2 has a distribution B2(2, p), where

p = λ1/(λ1 + λ2) = 0.5, by formula (3), we obtain

P (N
(2)
2 = 1) =

1∑
s=0

∑
m1,m2∋

m1+2m2=2−s−2

(
m1 +m2 + 1

m1,m2, 1

)(
0.5

0.5

)m1+m2

(0.5)2 = 0.25. (5)

Combining (4) with (5), we find that if k > 1,
Z1|Z1 + Z2 = n is not distributed as Bk(n, p). ⊓⊔

Proposition 10 Let P ∗
k (n, r)=̂P (N

(k)
n = r), then we

have the recurrence

P ∗
k (n, r) = P ∗

k (n− 1, r)− qpkP ∗
k (n− k − 1, r)

+pkP ∗
k (n− k, r − 1)− pk+1P ∗

k (n− k − 1, r − 1),

where n > k and 0 ≤ r ≤ [n/k].

Proof. Similar to Fig. 2, we still assume that k = 4
for simplicity. Considering the events

B1 = {there are r success runs occur in n trials and

they occur in the first (n− 1) trials too}

and

B2 = {there are r success runs occur in n trials and

no r success runs occur in the first (n− 1) trials},

we come to

B1 = {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊙︸ ︷︷ ︸
r runs in n trials

},

B2 = {
(r−1) runs in (n−1) trials︷ ︸︸ ︷
⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙ ⊙︸ ︷︷ ︸

r runs in n trials

},

obviously,

{N (k)
n = r} = B1 ∪B2. (6)

For the event B1, regardless of success or fail-
ure, the nth trial doesn’t change the number of success
runs, hence it can be decomposed as

B1 = B11 ∪B12,

where

B11 = {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊖︸ ︷︷ ︸
r runs in n trials

}

= {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊖},

B12 = {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊕︸ ︷︷ ︸
r runs in n trials

}

= {
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙ ⊙⊙⊙⊙⊕}\{
r runs in (n−1) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙︸ ︷︷ ︸
n−k−1 trials

⊖⊕⊕⊕⊕}.

Hence we have

P (B1) = P (B11) + P (B12)

= qP ∗
k (n−1, r)+pP ∗

k (n−1, r)−qpkP ∗
k (n−k−1, r)

= P ∗
k (n− 1, r)− qpkP ∗

k (n− k − 1, r). (7)

On the other hand, for the event B2, all the last k
trials must be success, otherwise, the nth trial, i.e. the
last one can’t lead to a success run. So

B2 = {
(r−1) runs in (n−1) trials︷ ︸︸ ︷
⊙ · · · ⊙ ⊙ ⊙⊕⊕⊕ ⊕︸ ︷︷ ︸

r runs in n trials

}

= {
(n−k) trials︷ ︸︸ ︷

⊙ · · · ⊙ ⊙⊙︸ ︷︷ ︸
(r−1) runs

⊕⊕⊕⊕}\{
n−k−1 trials︷ ︸︸ ︷
⊙ · · · ⊙ ⊙︸ ︷︷ ︸
(r−1) runs

⊕⊕⊕⊕⊕},

then we get

P (B2) = pkP ∗
k (n−k, r−1)−pk+1P ∗

k (n−k−1, r−1).
(8)

Combining (6), (7) with (8), we can derive the
recurrence relation in Proposition 10. ⊓⊔
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Remark 11 Proposition 10 yields

P ∗
k (n, 0) = P ∗

k (n− 1, 0)− qpkP ∗
k (n− k − 1, 0),

where n > k.

Proposition 12 The mean of the random variable
N

(k)
n distributed as Bk(n, p) is given by

EN (k)
n =

[n/k]∑
m=1

{1 + (n−mk)q}pmk.

Proof. Let En = EN
(k)
n , obviously, we find that

E0 = E1 = · · · = Ek−1 = 0, Ek = pk.

When n ≥ k + 1, following the equation in Proposi-
tion 10, we have

[n/k]∑
r=1

r · P ∗
k (n, r) =

[n/k]∑
r=1

r · P ∗
k (n− 1, r)

−qpk
[n/k]∑
r=1

r · P ∗
k (n− k − 1, r)

+pk
[n/k]∑
r=1

(r − 1 + 1) · P ∗
k (n− k, r − 1)

−pk+1

[n/k]∑
r=1

(r − 1 + 1) · P ∗
k (n− k − 1, r − 1),

that is

En = En−1 − qpkEn−k−1

+pkEn−k + pk − pk+1En−k−1 − pk+1,

or

En − pkEn−k = En−1 − pkEn−k−1 + qpk.

Let Hn = En − pkEn−k, then we get

Hk = Ek − pkE0 = pk

and
Hn = Hn−1 + qpk, n ≥ k + 1.

By the above recurrence, we come to

Hn = Hk + (n− k)qpk = pk + (n− k)qpk,

where n ≥ k + 1. That is

En − pkEn−k = pk + (n− k)qpk, n ≥ k + 1.

So, when n ≥ k,

En = pkEn−k + pk + (n− k)qpk

= p2kEn−2k+pk+p2k+(n−k)qpk+(n−2k)qp2k

= · · · = p[
n
k
]kEn−[n

k
]k + (pk + p2k + · · ·+ p[

n
k
]k)+

(n− k)qpk + (n− 2k)qp2k + · · ·+ (n− [
n

k
]k)qp[

n
k
]k

= 0 +

[n/k]∑
m=1

pmk +

[n/k]∑
m=1

(n−mk)qpmk

=

[n/k]∑
m=1

{1 + (n−mk)q}pmk.

The proof is complete. ⊓⊔
A Reliability Example. For transmitting signals from
site A to site B, n independent microwave transfer
stations with the same failure rate p are distributed
equidistantly between them. Each station can trans-
fer the signals to the next kth one. We know that the
whole microwave transfer system will be in operation
until k or more consecutive stations fail at the same
time [7]. We consider the reliability of the system R∗

n.
Obviously, R∗

n = P (N
(k)
n = 0) = P ∗

k (n, 0). So,
by Remark 11, we have (k + 1) initial values

R∗
k

R∗
k+1

R∗
k+2

· · ·
R∗

2k

 =


1− pk

R∗
k

R∗
k+1

· · ·
R∗

2k−1

−


0
qpk

qpk

· · ·
qpk


or

R∗
i = 1− pk − (i− k)qpk, (9)

where k ≤ i ≤ 2k.


R∗

i

R∗
i+1

R∗
i+2

· · ·
R∗

i+k

 =


R∗

i−1

R∗
i

R∗
i+1

· · ·
R∗

i+k−1

− qpk


R∗

i−k−1

R∗
i−k

R∗
i−k+1

· · ·
R∗

i−1

 ,

(10)
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where 2k + 1 ≤ i ≤ n− k.
By the iterative formula (10), we can calculate the

reliability of the system R∗
n. If the number of the mi-

crowave transfer stations n and the failure rate p are
fixed, then R∗

n is an increasing function of k; if the
number n and k are fixed, then R∗

n is a decreasing
function of p; moreover, for a fixed n and any k > 1,
R∗

n is significantly greater than Rn = (1 − p)n, the
series reliability of the system. This is shown clearly
in Fig. 3 where the horizontal axis denotes the failure
rate p and the vertical axis denotes the values of the
reliability.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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1
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n=20,k=4
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Fig. 3: The curves of R∗
n − p and Rn − p

4 Conclusions
We introduce the transition probability flow graphs
methods in studying the distributions of order k and
derive the probability generating function of Gk(p)
and NBk(r, p), show the correlation between Gk(p)
and NBk(r, p). Following NBk(r, p), we arrive at
the probability distribution of Bk(n, p). Some cor-
responding properties of Bk(n, p), such as its mean,
convergence and recurrence formula etc, are pre-
sented. Finally, we discuss a reliability question by
the properties.
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